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Properties of Vector Preisach Models

G. R. KAHLER, E DELLA TORRE, Fellow, IEEE, and U. D. PATEL, Member, IEEE

Abstract-- This paper discusses rotational anisotropy and
rotational accommodation of magnetic particle tape. These effects
have a performance impact during the reading and writing of the
recording process. We introduce the reduced vector mode] as the
basis for the computations. Rotational magnetization models must
accurately compute the anisotropic characteristics of ellipsoidally
magnetizable media. An ellipticity factor is derived for these
media that computes the two-dimensional magnetization
trajectory for all applied fields. An orientation correction must be
applied to the computed rotational magnetization. For isotropic
materials, an orientation correction has been developed and
presented. For anisotropic materials, an orientation correction is
introduced.

Index Terms—Preisach modeling, reduced medel, rotational
anisotropy, rotational accommodation, rotational orientation.

I. INTRODUCTION

HIS paper presents three extensions of the vector Preisach

model: the reduced vector Preisach model, RVPM, which

eliminates the need for a rotational correction in the
SVPM, and extension of the orientation correction to
anisotropic media, and a technique for handling vector
accommodation.

The accurate characterization of magnetic processes
requires a vector model of magnetic hysteresis. The classical
Preisach model cannot adequately represent vector magnetic
processes since it is inherently a scalar model. Several authors
have modified the scalar Preisach model to include the vector
features of a magnetic medium [1-4]. The Simplified Vector
Preisach Model (SVPM) [1] was developed for computing the
vector magnetization in response to a vector-applied field.

The SVPM is a coupled-hysteron model that exhibits both
the saturation property and the loss property [1]. The vector
magnetization is computed from the integration of the product
of a state vector and a Preisach function and then performing
the rotational correction. The state vector is computed using
the selection rules determined by the applied field. The
rotational correction term provides the cross-axis coupling
effect of applied fields. This cross-axis coupling term makes it
impossible to obtain an analytical closed form solution for the
magnetic susceptibility.

The Reduced Vector Preisach Model (RVPM) does not
require the rotational correction. The developed vector model
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uses modified selection rules for state vector calculation.

Using this new model as a basis to characterize the medium,
measurements and computations of the angle of magnetization
for a magnetic particle (MP) tape rotated in an applied field
have been made. This anisotropic material is ellipsoidally
magnetizeable, that is, when subject to a constant magnitude
rotating field has a magnetization trajectory that is nearly
elliptical [11]. This model has an orientation error which has
been corrected for isotropic media. We introduce a correction
for anisotropic media.

An ellipticity factor has been computed for ellipsoidally
anisotropic media that accurately computes the two-
dimensional magnetization for large applied fields (50%
greater than the hard axis coercivity of the material). A
procedure has been derived and is presented for computing the
magnetization trajectories for small applied fields. The
measured magnetization trajectories (polar plots of the
magnetization magnitude and angle) of elliptically
magnetizable material changes shape from ellipses for small-
applied fields to circles for large applied fields. The measured
ellipticity factor, A, for rotational applied fields approaches
one asymptotically as the applied field increases and the
magnetization trajectories become circles.

The phenomenon of accommodation has been presented and
discussed for scalar Preisach models [9] and a scalar
differential equation model has been introduced [10] to
compute  accommodation. Rotational =~ magnetization
measurements have demonstrated vector accommodation for
ellipsoidally magnetizable media [11]. From the magnetization
trajectories, accommodation is demonstrated for 360° of
rotation. The radial change in a magnetization trajectory from
the start to the end of applied field rotation is a measure of the
accommodation. As the rotating applied field increases, the
magnetization trajectories start with shapes of ellipses and
exponentially approach the shape of a circle.

II. SMPLIFIED VECTOR PREISACH MODEL

The SVPM computes the normalized irreversible
magnetization components as the product of the rotational

correction R(I ol y,I . ), and the basic Preisach integrals 1,
m1j=R(Ix,Iy,IZ)Ij,forj=x,y,orz. O

The output from the basic Preisach integrals I; are computed as

Ij = ijjp(uj,vj)iujdvj ,forj=xy,0rz, (2)

vj<ui

where the up and down switching fields are ; and v;, the
normalized Preisach function is p, and the state function is Q;.
The state function Q; is determined by selection rules. These
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selection rules are summarized in Table I for the 2-D model
and are generalized for the 3-D model in Table III.
The rotational correction is given by

) |1,‘|+|1y +|1,]

R0y 0, )=
1’Ix+1y+lz

It was shown [1] that for any set of values of I;, the rotation
correction ensures the correct magnitude of the magnetization

and1<R<43.
The normalized irreversible magnetization is computed as
the vector sum of three basic Preisach models as
my =RI. 4
The irreversible magnetization can be computed as the vector
sum

3)

MI =Mss.m1, (5)
where M; is the saturation magnetization and S is the material
squareness matrix defined as

S, 0 0
s=fo s, o] ©6)
0 0 S,

Thus, to simulate anisotropic media, this model can allow
different values for the §’s along each of the axes and
parameters in the basic Preisach models.

The normalized reversible magnetization components can
be computed as

mg; =aj+f(Hj)—aj—f(—Hj) Jorj=x,y0orz, (7)

where the a;, variables can be implemented with either a state-
independent, magnetization-dependent, or state-dependent
reversible magnetization as in the case of the scalar models.
The non-linear function f (H i ) is defined as

FlE;)=1-, ®
where £ is a model parameter that needs to be identified.

The reversible magnetization can be computed as a vector
sum,
MR=(1‘S)MS”’Rv ©)
where S is the squareness matrix defined in (6).
Then the total magnetization can be expressed as
MT=MI+MR' (10)
ITI. REDUCED VECTOR PREISACH MODEL

The Reduced Vector Preisach Model computes the
normalized irreversible magnetization components using the
basic Preisach integrals

my = IJ'Qij(uj,vj)iquvj ,forj=x y,0rz
vj<uj

(11

where the up and down switching fields are »; and v;, the
normalized Preisach function is p, and the state function is
Ox;.

The state vector, QOg;, for the RVPM differs from Q; for the
SVPM, and is computed by new selection rules summarized in
Table I for the 2-D case. These rules differ from the SVPM
case only at the corners. The subscript d is used for the

direction in which Q, is being computed. The subscript ¢ is
used to indicate the cross direction. The new selection rules
are defined such that no rotational correction is required for
computing the magnetization [5].

Similarly, the irreversible magnetization, the reversible
magnetization component and the total magnetization are
computed using (5), (9) and (10) respectively.

The application of selection rules shown in Table II shows
that at any point on the Preisach hyperplane, the sum of the
square of the Cartesian components of the state vector obeys

0} +Q)+0}=1. (12)

For the ellipsoidal magnetization behavior, the major
remanence path must satisfy

mi +my +ml, =1. (13)

For sufficiently strong fields, the normalized reversible
magnetization satisfies
m;x+m§y+m§z=l. (14)
Therefore, the normalized total magnetization can be
expressed as
m +mL +m? =1. (15)
The important properties of the RVPM can be summarized
as:

- The model is applicable to anisotropic media as well as
isotropic media.

- The model reduces to the scalar model when the
applied field and the initial magnetization lie along only
one of the principal axes, whereby, the vector model
will have all the properties of the scalar moving model.

In the presence of large fields, the normalized irreversible
magnetization and the reversible magnetization each trace out
ellipses whose major axes are at right angle to each other for
both isotropic and anisotropic media.

IV. REDUCED VECTOR PREISACH MODEL SIMULATIONS

The RVPM is applied to an isotropic magnetic medium. For
an isotropic medium, values for 0 and O, are equal, and

negligible compared to the average critical field H_k The

material parameters used for simulations are:G;=0, =165,
H,= 633,S= 057,M = 0014127,a = 33332.81,¢=
0.0009.

Simulations were carried out for the orthogonal component

H ,, of the applied field of l.la , 1.4k and 4h; . The vector

DOK model {7] is implemented based on the RVPM using the
cobweb method [6] for computation speed. Figure 1 shows the
magnetization angle versus the applied field angle. It can be
seen that the magnetization ratchets as the applied field rotates.
For very large applied fields, the magnetization angle becomes
equal to the applied field angle for all values.

Figure 2 shows the locus of the magnetization as the applied
field is rotated. It is seen that as the field increases, the curves
become rounder. The flattening of the loci close to 135° and
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315° is a discretization error caused by the jump in the
magnetization angle for the respective applied fields.

For isotropic media, since the magnetization rotates faster
than the applied field, the rotations of the magnetization need
to be corrected using the correction rules defined in [8].
Applying these corrections for the applied fields as in Fig. 1,
the corrected magnetization angle vs. applied field angle is
plotted as shown in Fig. 3. Figure 4 shows the magnetization
loci with corrections for an applied field rotation of 360°. It is
seen that the curves are more rounded.
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Fig. 1. Magnetization angle vs. applied field angle for applied fields
of 1.1k, (solid line), 1.4hy (dotted line), and 4hg (dash-dot line).

5y 4

g

Magnetization angle (deg.)
\

180} / E
-,
w0} P .
/_"

50 <7 :
/1
P

% 5 10 10 20 20 30 30

Appiied field angle (deg.)

Fig. 2. A plot of the corrected magnetization angle vs. applied field
angle for the same conditions as in Fig. 1.
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Fig. 3. Locus of magnetization for the same set of applied field

rotations as shown in Fig. 1.
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Fig. 4. A plot of the corrected magnetization angle vs. applied field
angle for the same conditions as in Fig. 1.

V. ORIENTATION

A simplified vector model was introduced [3] that is the
basis for the isotropic model. Two orthogonal Preisach planes,
each with its own Preisach function, are defined. For the easy
axis Preisach function, seven Preisach parameters (saturation
magnetization, squareness, average critical field, zero field
susceptibility, standard deviation of interaction field, standard
deviation of critical field, and moving parameter) are
identified for the isotropic material. The Preisach parameters
used for each orthogonal Preisach plane are set equal to this
set of identified parameters, thereby, making the model
isotropic. = The model then computes the irreversible
magnetization incorporating a rotational correction factor.
From the irreversible magnetization, the reversible
magnetization is computed. The irreversible and reversible
magnetizations are vectorally added together to obtain the total
two-dimensional magnetization. This isotropic computation
contains an orientation error as shown in Fig. 1. For isotropic
material, the magnetization should follow the applied field
after the magnetization begins to rotate. Applying the
orientation correction [2] removes this error as shown in Fig 2.
This paper extends the correction from the isotropic model to
the anisotropic model.

The two-dimensional vector magnetization of MP tape is
computed using a cobweb representation of a two-dimensional
Gaussian Preisach function [12] and [6], where the first
dimension is the X-Preisach plane and the second dimension is
the Y-Preisach plane. Figure 5 shows a cobweb for the X-
Preisach plane. Outside the outer ring of the cobweb, the
Preisach function is considered to have a negligible value.
This Preisach function is defined in each plane using seven
Preisach parameters identified for the MP tape in each plane.
The process of computing the magnetization for the
anisotropic MP tape consists of first computing the isotropic
magnetization, applying an isotropic orientation correction to
this magnetization, and then applying an anisotropic correction
to obtain the anisotropic magnetization.
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Fig. 5. Cobweb Preisach x-plane centered at the coercivity of a
material, Hy. Outer ring of cobweb is assumed to be at least 301
and 3oy from Hi.

To compute the isotropic magnetization for the MP tape,
the Preisach parameters for the hard axis are set equal to the
parameters identified for the easy axis. Using this isotropic
model, the isotropic magnetization is computed. Application
of the orientation correction removes the orientation error as
shown in Fig. 2.

The magnetization-applied field angle curves measured for
anisotropic MP tape are double periodic [11] An anisotropic
correction factor must be applied to the model results to obtain
the double-periodic oscillating characteristic of anisotropic
media. Since this oscillating characteristic is sinusoidal in
nature, a sinusoidal correction may be derived. Let 8, be the
angle of applied field after applying the orientation correction.
Then

X =sin(8y ) (16)
and
Y =cos(8) (17)
are the sinusoidal representations of the anisotropic applied
field, X, and magnetization, Y, respectively. There may be a
required linear shift associated with (16) and (17). Let 8y and
Oy be the anisotropic angles of applied field and
magnetization, respectively. Then,
o H = X +AQ8 H >

HM = atanZ(%)hAeM R

where A8y and A8y are the required associated linear shifts,
and X is the anisotropic correction factor. The variables, AGy
and Ay, respectively, determine the amount of horizontal shift
of 6y and the amount of vertical shift of 8y. The amplitude of
the sinusoidal curve, Y, in (19) is adjusted by A and generates a
double periodic curve between 0° and 360°,

(18)
and

(19)
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Fig. 6.. MPT computed anisotropic magnetization-applied field angle
curves computed from the corrected isotropic magnetization-applied field
angle curves. The dotted line is a reference line where the maguetization
angle equals the applied field angle.

which matches the measured curve, except for applied fields
between plus and minus the coercivity, Hc. Figures 6 and 7
show the computed, using (18) and (19), and the measured
anisotropic  magnetization-applied field angle curves,
respectively.

The measured magnetization-applied field curves are
computed from measured x- and y-component magnetization
for the applied fields pH = 0.5, 0.25, and 1.0 T. The curves
are double periodic. The angle of magnetization exceeds the
angle of applied field before 180° and before 360° (0°), which
correspond to the negative and positive easy-axis directions of
the MP tape. This result happens, because the angle of
magnetization lies between the easy axis and the angle of
applied field. When the x-component of the applied field
exceeds the coercivity, Hc, the magnetization tends toward the
closest easy axis, resulting
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Fig. 7. MPT measured anisotropic magnetization-applied field angle
curves for three applied fields. The dotted line is a reference line where
the magnetization angle equals the applied field angle.
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in a possible angle of magnetization greater than the angle of
applied field. As the applied field increases, the curves tend to
straighten out and lie along the dashed 45° line, where the
angles of magnetization and applied field are equal.

Figure 8 shows the anisotropic correction, A, used in (19) to
adjust the amplitude of the sinusoidal to fit the measured
curves in Fig. 7. This curve is a smooth ascending curve to
H;. Above H, this curve is a smooth descending curve
approaching the value of one asymptotically as the applied
field increases. The flat appearance of this curve in the
neighborhood of Hc is due to the discretation size of the
applied field, p H=0.05T.
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Fig. 8. Measured ellipticity factor for MP tape over the applied field
range H=0Tto 1.3 T.

VI. ORIENTATION EXTENSION

The SVPM and the RVPM each produce a magnetization
angle-applied field angle curve with a four-fold periodicity as
shown in Fig. 1. Since the angle of magnetization actually
follows the angle of applied field uniformly, an orientation
correction factor is applied by the model to ensure that this
characteristic is correctly produced. The orientation correction
factor removes the four-fold periodicity from 0° to 360°, but it
also removes the two-fold anisotropic periodicity that is
characteristic of anisotropic media shown in Fig. 7.

As the applied field increases from zero, the magnetization
starts and remains at zero until the applied field begins to
sweep through the media’s hard-axis Preisach function. At
this point, the magnetization begins to rotate and follow the
applied field. As the applied field continues to rotate, the
magnetization continues to rotate as more hysterons switch.

Because the media are anisotropic, the hysterons along the
easy axis of the media switch easier than the hysterons along
the hard axis switch, thereby introducing a sinusoidal
periodicity into the magnetization. The magnetization always
lies between the applied field and the easy axis. Rotating the
applied field from 0° to 360°, the magnetization follows the
applied field until the easy-axis component of the
magnetization switches from positive to negative. When the
easy-axis component of the magnetization becomes negative,

the magnetization lies between the applied field and the
negative easy axis (180°); the magnetization now leads the
applied field as shown in Fig. 7. The magnetization leads the
applied field until the easy-axis component of the applied field
becomes negative, and the magnetization returns to follow the
applied field.

To implement a two-dimensional rotational anisotropic
model, one must consider how much of the hard axis Preisach
function is swept by the applied field as shown in Fig. 9 for a
positive applied field. In Fig. 9, the black area of the Preisach
function is the area swept by the applied field. When the
applied field is less than the Preisach function, none of the
Preisach function is swept, and the Preisach function in Fig. 9
is all white. When the applied field is greater than the
Preisach function, the entire Preisach function in Fig. 9 is
black. The areas of the Preisach function that are black
correspond to magnetic particle whose magnetization rotates,
whereas, the white areas correspond to magnetization that

14 1000 2000 000 4000 5000 800
Apphied fleld, Oersted”

Fig. 9. Preisach function along hard axis of MP tape with applied field,

poH = 0.15 T. Magnetization rotates in black area; magnetization
oscillates in white area as the applied field rotates.

oscillates. Because the hard axis applied field varies from
positive to negative during rotation of 360°, there is a similar
sweeping of the hard axis Preisach function for negative
applied fields.

The computation of anisotropic magnetization follows the
process depicted by the flow diagram shown in Fig. 10. When
the applied field does not sweep the Preisach function, Pg = 0,
there is no rotation of the magnetization, and the magnetization
is computed by the RVPM without an ellipticity correction.
When the applied field completely sweeps the Preisach
function, Pr = 1, there is complete rotation of the
magnetization, and an ellipticity correction is applied to the
entire RVPM computed magnetization. When the Preisach
function is partially swept by the applied field, O< Py <1, a
portion of the magnetization is rotating, Cg, and a portion of
the magnetization is oscillating, Co. The
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Hr = Applied Field
Py =Hard Axis Preisach Function

Area
Pr = Area of Py Swept by Hr
A = Ellipticity Correction Factor

Mosc = Oscillating Magnetization

M =Mt My

Fig. 10. Flow chart to compute rotating and oscillating magnetization.

oscillating magnetization is computed by multiplying the
RVPM magnetization by the coefficient, Co. The rotating
magnetization is computed by multiplying the RVPM
magnetization by the ellipticity correction factor and then by
the coefficient, Cg. The total magnetization is then determined
by vectorally adding the oscillation magnetization and the
rotational magnetization as shown in Fig. 11.

VII. ELLIPTICITY FACTOR

The ellipticity factor is the ratio of the change in
magnetization along the easy axis to the change in
magnetization along the hard axis. Let Hg be the magnitude of
the rotating field. Let M}, be the component

Muara
A

P My

Fig. 11. Vector sum of magnetization contributed by oscillating
magnetization (Mos:) and magnetization contributed by rotating
magnetization (Myw).

of the easy-axis (x-axis) irreversible magnetization and M, be
the component of the hard-axis (y-axis) irreversible
magnetization during rotation of the applied field Then

H -H
X
and
Hp, - H
M,y =Mssy erf(——-y—o';——c—?—} 21

where Mg is the saturation magnetization, S, and S, are the
easy and hard axis squareness respectively, Hz, and Hg, are
the easy and hard axis average critical fields respectively, and
o, and o, are the easy and hard axis standard deviation of the
interaction and critical fields respectively. Define the
reversible magnetization function,
G=a,f(Hg)-a_f(-Hg) 22
The coefficients, a, and a. in (22) are derived for the easy and
hard axes using the irreversible magnetization of (20) and (21),

1+ M; 1-M;
a,, = “ and a,_= > = (23)
and
1+ M, 1-M;
ay, =— - and @y =——= 24

The reversible function, f in (22), may. be any convenient
function that goes through zero when the applied field equals
zero and is finite for large values of applied field. Consider
the function
F(H)=1-exp(-£H) forH >0 (25)
and
f(H)=H forH <0. (26)
where £ is a model parameter that needs to be identified. The
reversible magnetization is
Mg =G(-SHzMs1y,, 27
where 1g_ is a unit vector in the direction of Hg. For the easy

and hard axes (x and y respectively),

Mg, =G (-5, M (28)
and
Mg, =G, (-5, Ms. (29)
Adding (20) and (23)
My =MgS, erf{ERxa"—HC‘)+ G (-5 WMg. (30)
X
Adding (21) and (24)

Hpy, -Hc
M, =MsS), erf(——-!;;_l};-Gy(l-Sy)\ls. 31)

Then, the ellipticity correction factor, A., equals (30) divided
by (31)
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s, eﬂ(ﬂ;@_—_liga]m,(l_sx)

A Ix
e” ' (32)
HpRy - Hcy
The rotational magnetization is computed from
Mrot =-‘/M%+M% (33)

and when added to M,,. computes the resultant magnetization,
M. Multiplying (30) by C, and (31) by C; enables the
computation of Oy and 0y, the angle of applied field and the
angle of magnetization respectively for the rotation of the
applied field. Figure 12 shows the rotation coefficient, C, , for
positive applied fields.

Rotation Coefficient, C,
(=]
(1]

L : 2 : N
r’D 0.05 o1 0.15 02 [ 03 035
Applied Field an, T

Fig. 12 Computed rotation coefficient, C; , for positive applied fields.

VIIL. ROTATIONAL ACCOMMODATION

Accommodation, based upon the magnetic interaction
between hysterons, causes the driftihg of minor loops with the
reversal of applied fields. This drifting has an important
impact, because it affects the repeatability of the recording
process and causes performance changes during the operation
of motors and transformers. To understand accommodation,
one must understand to where the magnetization is drifting. A
magnetic calculation in a complex process will give a wrong
answer with the classic Preisach model that does not have
accommodation. Accommodation, which is rate independent,
appears to be similar to aftereffect, which is rate dependent.
Accommodation and aftereffect are caused by different
processes.

Vector measurements made on MP tape have displayed
vector accommodation [11]. For these measurements, several
different applied fields were rotated 360° after initialization of
a negative saturation field. The x- and y- components of the
magnetization were measured. The vector sum of these
measurements, which we call magnetization trajectories,
generate elliptic loci [11]. A magnetization trajectory of a

material is different for each different applied field. The
magnetization trajectories in Fig. 13 are for applied fields with
a fixed magnitude and for rotations from 0 to 360°. The
difference between the starting and ending magnetization
magnitude is a measure of the accommodation. The difference
between the starting and ending magnetization angle is a
measure of the lag. As the applied field increases, the shape of
the trajectories changes exponentially from ellipses to circles
as shown in Fig. 13.

The details of the lag angle and the accommodation are
shown in Fig. 14 for a measured magnetization MPT trajectory
for a clockwise rotating applied field of 0.2 T. A

Fig. 13. Change in magnetization for applied fields of p.H = 0.2 T,
03T,and 10T
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more precise measure of accommodation is computing the
difference between starting and ending of the trajectory
magnitude after the ending magnetization is extrapolated to the
same angle that the magnetization started (0° and 360°).

Fig. 14. Measured MPT magnetization trajectory for a
clockwise rotating applied field of 0.2 T showing a measure of
magnetization accommodation and lag.

Fig.15. Measured and Computed Ellipsoidal Trajectory at poH =02 T

Figure 15 shows the measured MPT magnetization
trajectory and a computed ellipse with and exponential decay
for a rotating applied field of 0.2 T. The computed trajectory
shows that the measured trajectory is ellipsoidal and that the
accommodation is an exponential decay of this trajectory. The
decay tends towards zero as the applied field increases to large
values as shown in Fig. 13.

IX. CONCLUSIONS

A simpler vector model is developed that does not require
the rotational correction for computation speed. The
elimination of the rotational correction makes it possible to
implement the differential method, a very effective way to

compute the magnetization. The simulation results show that
the presented model represents isotropic media accurately.
Further refinement of this vector model in terms of speed and
accuracy is a topic of further research.

The orientation correction for isotropic material was
extended for anisotropic material. This extension consists of
identifying rotational and oscillatory magnetization by
determining the percentage of the hard axis Preisach function
swept by the applied field. The extension corrects the
magnetization to produce the anisotropic double fold
periodicity. The amplitude of the double fold periodic
magnetization tends towards zero as the applied field
increases.

Vector measurements made on magnetic particle tape, and
anisotropic medium, display vector accommodation, which is
especially evident in polar format. For small applied fields,
the magnetization trajectories form ellipses that exponentially
form circles as the applied field increases to large values. A
measure of the accommodation is the difference between the
start and the end of a magnetization trajectory. The
accommodation may be represented as an exponential decay of
an ellipsoidal magnetization trajectory. Incorporation of
vector accommodation into a Preisach vector model is the
subject of future research.
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> REPLACE THIS LINE WITH YOUR PAPER.IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

TABLE L. SVPM STATE FUNCTION VALUES IN TWO DIMENSIONS, O,

v, >h, vy <h,<u, h,>u,
v >hy hy —vs 0 hy —u,
y
lh, —vx|+|h‘v —vy[ Ihx —ux|+|hy —vy‘
vy <hy,<u, -1 no change 1
hy >uy h, “Vx ) 0 hy—u,
e —v|+[, v, | s —ue|+[py v, |
TABLE II. RVPM STATE FUNCTION VALUES IN TWO DIMENSIONS, Q;
v, >h, v.<h,<u, hy >u,
h,-v h,-u
vy >hy x X 0 x Uy
J(hx _"x)z"'(hy_"y)z J(hx‘"x)z"'(hy "vy)z
vy<hy,<u, -1 No change 1
hy >u,y hy v, 0 hy —u,
J(hx _vx)2+(hy—vy)2 J(hx —ux)2+(hy —vy)z
TABLE Il STATE FUNCTION VALUES IN THREE DIMENSIONS, Q;
Number of Violations States
violations
0 vy <hy<u; no change
holds forj=x,yand z
1 h;>ujor h; <v; Q;=lor 0;=~1and Q, =0 ,i#j
Any two combinations of 0. = h; —t; 0, = h =1,
violations in u or v where [ ~/ J _ PR J _ ¥
2 the thresholds violated (=1, F + O ~1,) Oy 1, F + (1)
are called z; and ¢, . and Q, =0 ,i# j,k
Any three combinations Q. = h, -1, ,
of violations in u or v ' J h
~t )+, -t ] +(h -t
3 where the thresholds b =0.F + =1, F + (-1}
violated are called h; -t
t;,t;andt, . Q; = - and
\/(hx‘ -5,y +(hj _tj)z +(hy —1,)
0, = hk —I
kT 2 2
\/(hi ~1,) +(hj —tj)z +(h —1,)




